Теломеры: невнятный секрет долголетия

Наверное, еще с того момента, как первые наши прапрапредки обрели , человек боялся смерти и искал пути ее предотвратить или отсрочить. Древний человек жаждал утешения в представлениях о загробном мире, позже алхимики пытались изобрести зелья, которые помогли бы достичь бессмертия. С развитием науки ученые стремились понять, как работает наша смертность на клеточном уровне и еще глубже – и можно ли серьезно изменить отмеренный человеку век. Именно о теломерах часто говорят как о некоем секрете долголетия, том самом волшебном рычаге в , который может прибавить один-два десятка лет к нашей жизни. Так ли это?

ДНК эукариотов (организмов, все которых имеют ядро – в отличие от прокариотов, такового не имеющих) состоит как из кодирующих, так и из некодирующих участков. Причем первых гораздо меньше, чем вторых. Это, впрочем, вовсе не странно, ведь многоклеточный организм – структура чрезвычайно сложная, и для его регуляции требуется очень много данных. Теломеры выполняют одну из таких регуляционных функций: они определяют возраст клетки. И здесь стоит уточнить: этот возраст – не то время, которое просуществовала.


Сама по себе теломера – структура чрезвычайно простая. Это концевые участки хромосом, которые содержат в себе повторяющийся нуклеотидный паттерн. У большинства животных он выглядит как TTAGGG (буквы обозначают нуклеотиды: тимин, аденин, гуанин соответственно). Такие последовательности, как уже было написано выше, ничего не кодируют. Их роль можно назвать жертвенной. При каждом новом делении клетки ее генетический материал копируется. За это отвечает целый комплекс ферментов, которые расплетают, стабилизируют и воспроизводят нити ДНК, а также формируют затравки-праймеры. Центральную роль здесь играет ДНК-полимераза, которая синтезирует новую цепь нуклеиновой кислоты, используя существующую в качестве матрицы.

У ДНК-полимеразы существует одна особенность: она не способна синтезировать нить ДНК с самого конца. Это своего рода «не баг, а фича»: благодаря такой особенности фермента нити ДНК при каждом делении укорачиваются на определенную длину. Казалось бы, получающиеся при таком процессе клетки будут неполноценными с генетической точки зрения, ведь может теряться важная . Но, благодаря существованию теломер, этой потери до определенного момента не происходит: концевые последовательности ДНК смиренно уменьшаются в размерах, позволяя сохраниться генетическим данным, которые они обрамляют.

Наилучшим кратким определением для теломер будет «обратный счетчик количества клеточных делений». Каждая клетка может пройти примерно через 50 делений: после этого теломеразная защита исчерпается, и это служит сигналом для начала апоптоза – запрограммированной клеточной смерти. Число в 50 делений называют «пределом Хейфлика» – в честь Леонарда Хейфлика, который этот лимит делений и открыл. Хейфлик со своим коллегой Полом Мурхедом поставил простой и наглядный эксперимент. Ученые в равных частях смешали фибробласты, взятые от мужчин и от женщин; при этом мужские клетки уже прошли 40 циклов делений, а женские – только десять. Роль контрольной группы играли чисто мужские фибробласты.

Когда клетки в контрольной культуре перестали делиться, Хейфлик с Мурхедом обнаружили, что смешанная культура уже не смешанная: все мужские фибробласты в ней погибли, остались лишь женские клетки. На основании этого Хейфлик и сделал свой вывод о жизненном лимите клеток человеческого организма.

Однако не всегда и не везде жизненный цикл клетки предопределен теломерами. Существует механизм, который позволяет сделать клетку фактически бессмертной, а имя ему – .

Существование теломеразы было предсказано еще в 1974 году как способ объяснить отсутствие старения у некоторых типов клеток – причем клеток как здоровых (стволовых), так и патологически измененных (например, клеток раковых опухолей). Предсказал существование этого фермента 45-летний советский ученый Михаил Оловников, назвав его тандем-ДНК-полимеразой. А уже через семь лет, в 1981 году, американка Элизабет Блекберн подтвердила теорию Оловникова, выделив этот .

Вместе со своей аспиранткой Кэрол Грейдер Блэкберн выделила и очистила фермент, показав, что, кроме белков, в его состав входит еще РНК. К середине 1980-х ряд экспериментов показал, что у организмов с мутацией в теломеразных РНК происходит ускоренное укорачивание теломер, а клетки этих организмов развиваются очень медленно и в конце концов прекращают рост. Элизабет Блэкберн подтвердила этот феномен у тетрахимен (пресноводных инфузорий), Кэрол Грейдер – на клетках человека, а еще один американский ученый Джек Шостак – в культуре дрожжей. Этих троих ученых объединяет еще один факт: в 2009 году «за открытие того, как теломеры и фермент теломераза защищают » они были удостоены Нобелевской премии.

0 Комментарий
Inline Feedbacks
View all comments