Американская лаборатория вплотную подошла к зажиганию плазмы в управляемой термоядерной реакции

Сотрудникам Национального комплекса лазерных термоядерных реакций США (National Ignition Facility, NIF) удалось в серии последовательных экспериментов достичь энерговыделения плазмы свыше 60 килоджоулей. Это как никогда близко к ключевому порогу, при котором реакция а будет самоподдерживающейся.

Об успехах ядерщиков сообщили на встрече Отдела физики плазмы Американского физического общества (American Physical Society’s Division of Plasma Physics). Также об этом пишет портал Sciencemag (новостной сайт Американской ассоциации достижений науки — AAAS), ссылаясь на Марка Херрманна (Mark Herrmann), заведующего всей программой исследований управляемого термоядерного синтеза (УТС) в Ливерморской национальной лаборатории имени Лоуренса, где расположен комплекс NIF.


По словам Херрманна, в недавнем эксперименте удалось существенно превысить порог в 60 килоджоулей, а эта цифра — устойчиво повторяемый результат. Ближайшие «выстрелы» установки NIF помогут понять, насколько ученые близки к заветному пределу в 100 килоджоулей. Согласно расчетам, именно на этой отметке энерговыделения у ливерморских специалистов получится создать самоподдерживающуюся термоядерную реакцию, то есть зажечь плазму. Большим достижением будет и несколько меньший выход энергии (70-90 килоджоулей), при котором «горение» еще не начнется, но уже будет происходить саморазогрев плазмы.

Национальный комплекс лазерных термоядерных реакций запустили в 2010 году, и с тех пор эта установка произвела около трех тысяч «выстрелов» своими почти двумя сотнями лазеров. Первоначальное предназначение NIF — эксперименты по созданию и поддержанию управляемых реакций синтеза. В «сердце» комплекса расположена вакуумная камера, куда помещают специальные мишени с термоядерным м (дейтерий плюс тритий). Их облучают чрезвычайно мощными и кратковременными ами ультрафиолетового лазера, что приводит к резкому сжатию и нагреву топлива, в котором возникает реакция синтеза ядер.

Одна из особенностей установки NIF — используемая технология обжатия и разогрева плазмы. Капсула с топливом облучается лазерами не напрямую: их импульсы нацелены на специальный контейнер — хольраум (hohlraum). Он сделан из золота и при резком нагреве испускает . Форма контейнера рассчитана так, чтобы все это падало равномерно со всех сторон на капсулу с топливом. Та, в свою очередь, резко испаряется, и в результате дейтерий с тритием оказываются одновременно сильно сжаты и нагреты до миллионов градусов. Итогом всего процесса должна стать термоядерная реакция, которая длится несколько мгновений.

Несмотря на кажущуюся простоту описанных процессов, заставить эту схему хорошо работать получилось только в формате . Каждый последующий эксперимент по управляемому термоядерному синтезу демонстрирует все новые сложности с ограничениями. Например, в первые три года после а NIF на установке удалось достичь энерговыделения плазмы всего лишь в один килоджоуль. При этом мощность рентгеновского потока в хольрауме достигала 21 килоджоуля, а лазерный импульс для его производства вовсе имел мощность 1,8 мегаджоуля. Воп всем теоретическим расчетам разогреву плазмы мешали ранее неучтенные факторы — от микрометровых неровностей на капсуле с топливом до искажения пучка рентгеновского излучения поддерживающими мишень ми.

Такие удручающие результаты не могли не сказаться на репутации всей программы исследований управляемого термоядерного синтеза. Тем более что постройка Национального комплекса лазерных термоядерных реакций обошлась американским налогоплательщикам в четыре миллиарда долларов (в четыре раза больше изначального бюджета). После того как в первой кампании экспериментов команде NIF не удалось достичь запланированных результатов, вся судьба проекта оказалась под вопросом. Финансирование комплекса урезали, а его ресурсы перенаправили на другие исследования.

В последние годы «выстрелы» установки распределяются следующим образом: примерно 10% производятся в рамках фундаментальных физических исследований, еще 30% уходят на эксперименты по управляемому термоядерному синтезу, а остальные выполняют в интересах военных, которым необходимо симулировать ы термоядерных бомб для проверки надежности боеголовок. При этом нельзя сказать, что сотрудники NIF ничего не добились на поприще УТС.

Еще в 2013 году при анализе экспериментов, когда энерговыделение плазмы составляло скромные 10-14 килоджоулей, выяснили, что топливо поглотило меньше энергии в виде рентгеновского излучения, чем произвела реакция синтеза. Это был серьезный успех, хоть и не такой оглушительный, как планировалось. Впоследствии комплекс существенно доработали, добавив детекторы в вакуумную камеру и нарастив мощность лазеров. Таким образом удалось хорошо изучить поведение мишени внутри хольраума во время облучения и возникновения реакции.