Проведено исследование, которое поможет разработке новых энергоэффективных и ресурсосберегающих технологий

Группа ученых из ЮФУ смогла проследить эволюцию атомной структуры молекул этилена на поверхности наночастиц палладия — материала, который находит широкое применение в таких отраслях, как катализ, водородная энергетика и медицина. Материалы на основе палладия активно используются в нефтехимической и автомобильной промышленности, при производстве сенсоров и целого ряда других устройств. Поэтому исследователи надеются, что их исследование поможет разработке новых энергоэффективных и ресурсосберегающих технологий.

Совместное исследование студентов и научных сотрудников Международного исследовательского института интеллектуальных материалов Южного федерального университета, проведенное под руководством директора института, доктора физико-математических наук Александра Солдатова, благодаря своей актуальности попало на обложку сентябрьского выпуска журнала Nanomaterials.

Исследования ученых Южного федерального университета в рамках проекта «Новые функциональные наноматериалы для применения в каталитических процессах и в технологиях для хранения и преобразования энергии» направлены на развитие материалов для нефтехимической промышленности.

Катализаторы на основе палладия активно используются в тонком химическом синтезе для переработки углеводородного сырья. Поэтому понимание процессов, происходящих при взаимодействии углеводородных молекул с активными центрами катализаторов, является актуальной задачей – как с фундаментальной, так и с практической точек зрения, в том числе в рамках перехода к новым энергоэффективным и ресурсосберегающим технологиям.

Благодаря использованию комплекса взаимодополняющих методик, основанных на применении инфракрасного и рентгеновского (синхротронного) излучения, группа исследователей Международного исследовательского института интеллектуальных материалов ЮФУ смогла проследить эволюцию атомной структуры молекул этилена на поверхности наночастиц палладия.

«Оказалось, что процессы, происходящие на реальных катализаторах при температурах и давлениях, приближенных к реальным технологическим, существенно отличаются от тех, что наблюдаются на идеальных металлических поверхностях в высоком вакууме. В частности, ученые выделили в качестве основного процесса последовательное отщепление водорода от молекул этилена с дальнейшим разложением на атомарный углерод и формированием карбида палладия.



Примечательно, что объемные карбиды палладия образуются в чистом этилене даже при низких температурах, близких к комнатной», – рассказал руководитель проекта, директор Международного исследовательского института интеллектуальных материалов ЮФУ, доктор физико-математических наук Александр Солдатов.

Благодаря своим уникальным свойствам палладий находит широкое применение в таких отраслях, как катализ, водородная энергетика, медицина. Материалы на основе палладия активно используются в нефтехимической и автомобильной промышленности, при производстве сенсоров и целого ряда прочих устройств. Палладий является наиболее предпочтительным материалом при производстве катализаторов для многих промышленно значимых реакций, таких как селективное гидрирование углеводородов, окисление спиртов и метана.

Проект «Новые функциональные наноматериалы для применения в каталитических процессах и в технологиях для хранения и преобразования энергии» был реализован на базе Международного исследовательского института интеллектуальных материалов Южного федерального университета. Активное участие в работе приняли заведующий Международной исследовательской лабораторией нанодиагностики Арам Бугаев, аспиранты МИИ ИМ ЮФУ, Олег Усольцев, Алина Скорынина и Андрей Терещенко, а также магистранты первого года обучения Елизавета Камышова и Анна Пневская, для которых исследование было частью модуля проектной деятельности.

Работа опубликована в журнале Nanomaterials, входящем в первый квартиль, в категориях Materials Science и Chemical Engineering по версии Scimago, и размещена на обложке сентябрьского выпуска журнала. Исследование проводилось в ведущем европейском центре синхротронных исследований ESRF (Гренобль, Франция) и на лабораторном оборудовании МИИ ИМ ЮФУ при финансовой поддержке Госзадания в сфере научной деятельности. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.

Скопировать ссылку