Инженеры изгибают свет для улучшения преобразования длины волны

Инженеры-электрики из инженерной школы Самуэли Калифорнийского университета в Лос-Анджелесе разработали более эффективный способ преобразования света с одной длины волны на другую, открывая двери для улучшения характеристик систем визуализации, восприятия и связи.



Мона Джаррахи, профессор электротехники и компьютерной инженерии в Калифорнийском университете в Лос-Анджелесе, Самуэли, возглавляла Nature Communications-опубликованные исследования.

Поиск эффективного способа преобразования длин волн света имеет решающее значение для улучшения многих технологий визуализации и зондирования. Например, преобразование входящего света в волны терагерцового диапазона позволяет создавать изображения и воспринимать в оптически непрозрачных средах. Однако предыдущие системы преобразования были неэффективными и требовали громоздких и сложных оптических установок.

Команда под руководством Калифорнийского университета в Лос-Анджелесе разработала решение для повышения эффективности преобразования длины волны, исследуя обычно нежелательное, но естественное явление, называемое состояниями поверхности полупроводников.

Поверхностные состояния возникают, когда поверхностные атомы имеют недостаточное количество других атомов для связывания, вызывая нарушение атомной структуры. Эти неполные химические связи, также известные как «оборванные связи», препятствуют прохождению электрических зарядов через полупроводниковые устройства и влияют на их характеристики.

«Было предпринято множество попыток подавить влияние поверхностных состояний в полупроводниковых устройствах, не осознавая, что они обладают уникальными электрохимическими свойствами, которые могут обеспечить беспрецедентную функциональность устройств», — сказал Джаррахи, возглавляющий лабораторию терагерцовой электроники Калифорнийского университета в Лос-Анджелесе.

Фактически, поскольку эти неполные связи создают неглубокое, но гигантское встроенное электрическое поле на поверхности полупроводника, исследователи решили воспользоваться преимуществами поверхностных состояний для улучшения преобразования длины волны.

Входящий свет может поразить электроны в решетке полупроводника и переместить их в более высокое энергетическое состояние, после чего они могут свободно прыгать внутри решетки. Электрическое поле, создаваемое на поверхности полупроводника, дополнительно ускоряет эти фотовозбужденные высокоэнергетические электроны, которые затем выгружают дополнительную энергию, которую они получили, излучая ее на разных длинах оптических волн, тем самым преобразуя длины волн.

Однако этот энергообмен может происходить только на поверхности полупроводника и должен быть более эффективным. Чтобы решить эту проблему, команда включила массив наноантенн, который изгибает падающий свет, чтобы он плотно ограничивался мелкой поверхностью полупроводника.