Оптически активные дефекты улучшают углеродные нанотрубки

Свойства углеродных наноматериалов могут быть изменены и модифицированы путем преднамеренного внесения определенных структурных «несовершенств» или дефектов. Однако проблема состоит в том, чтобы контролировать количество и тип этих дефектов. В случае углеродных нанотрубок – микроскопических трубчатых соединений, излучающих свет в ближнем инфракрасном диапазоне – химики и материаловеды из Гейдельбергского университета под руководством профессора д-ра Яны Заумсейл продемонстрировали новый путь реакции, позволяющий контролировать такие дефекты. Это приводит к появлению определенных оптически активных дефектов – так называемых sp3-дефектов – которые более люминесцентны и могут излучать одиночные фотоны, то есть частицы света. Эффективное излучение ближнего инфракрасного света важно для приложений в телекоммуникациях и биологической визуализации.


Обычно дефекты считаются чем-то «плохим», что отрицательно сказывается на свойствах материала, делая его менее совершенным. Однако в некоторых наноматериалах, таких как углеродные нанотрубки, эти «недостатки» могут привести к чему-то «хорошему» и открыть новые функциональные возможности. Здесь решающее значение имеет точный тип дефекта. состоят из свернутых листов гексагональной решетки sp2-атомов углерода, как и в бензоле. Эти полые трубки имеют диаметр около одного нанометра и длину до нескольких микрометров.

Посредством определенных химических реакций несколько атомов углерода sp2 решетки могут быть превращены в sp3, который также содержится в метане или алмазе. Это изменяет локальную электронную структуру углеродной нанотрубки и приводит к оптически активному дефекту. Эти sp3-дефекты излучают свет еще дальше в ближнем инфракрасном диапазоне и в целом более люминесцентны, чем нанотрубки, которые не были функционализированы. Из-за геометрии углеродных нанотрубок точное положение введенных атомов углерода sp3 определяет оптические свойства дефектов. «К сожалению, пока очень мало контроля над тем, какие дефекты образуются», – говорит Яна Заумсейл, профессор Института физической химии и член Центра перспективных материалов Гейдельбергского университета.

Ученый из Гейдельберга и ее команда недавно продемонстрировали новый путь химической реакции, который позволяет контролировать дефекты и селективно создавать только один конкретный тип дефекта sp3. Эти оптически активные дефекты «лучше», чем любые из ранее внесенных «недостатков». Проф. Заумсейл объясняет, что они не только более люминесцентные, но и демонстрируют однофотонное излучение при комнатной температуре. В этом процессе одновременно излучается только один фотон, что является предпосылкой для квантовой криптографии и высоконадежной связи.

По словам Саймона Сеттеле, докторанта исследовательской группы профессора Заумсейла и первого автора статьи, сообщающей об этих результатах, этот новый метод функционализации – нуклеофильное добавление – очень прост и не требует специального оборудования. «Мы только начинаем изучать возможные применения. Многие химические и фотофизические аспекты все еще неизвестны. Однако цель состоит в том, чтобы создать еще лучшие дефекты».

Это исследование является частью проекта «Трионы и sp3-дефекты в одностенных углеродных нанотрубках для оптоэлектроники» (TRIFECTs), возглавляемого профессором Заумсейлом и финансируемого Консолидаторным грантом ERC Европейского исследовательского совета (ERC). Его цель – понять и спроектировать электронные и оптические свойства дефектов в углеродных нанотрубках.

«Химические различия между этими дефектами незначительны, и желаемая конфигурация связывания обычно формируется только в небольшом количестве нанотрубок. Возможность производить большое количество нанотрубок с конкретным дефектом и с контролируемой плотностью дефектов открывает путь для оптоэлектронных устройств, а также – источники одиночных фотонов с электрической накачкой, которые необходимы для будущих приложений в квантовой криптографии », – говорит профессор Заумсейл.

В этом исследовании также приняли участие ученые из Мюнхенского университета Людвига Максимилиана и Мюнхенского центра квантовой науки и технологий.

0 Комментарий
Inline Feedbacks
View all comments